Newton's first law $\sum{\vec{F} } = \vec{0} \Rightarrow \frac{d\vec{v}}{dt} = 0$
Newton's second law $\vec{F} = \frac{d \vec{p}}{dt} = m \frac{d \vec{v}}{dt} = m \vec{a}$
Newton's third law $\vec{F}_A = - \vec{F}_B$
Einstein Mass–energy equivalence $E = mc^2$
Gauss's law $\nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$
Gauss's law for magnetism $\nabla \cdot \vec{\mathbf{B}} = 0$
Ampère's law $\nabla \times \vec{\mathbf{B}} - \frac{1}{c} \frac{\partial\vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c}\vec{\mathbf{j}}$
Maxwell–Faraday equation $\nabla \times \vec{\mathbf{E}} + \frac{1}{c} \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$
First law of thermodynamics $dU = \delta Q - \delta W$
Second law of thermodynamics $dS = \frac{\delta Q}{T}$
Third law of thermodynamics $S = k_B \ln{\Omega}$
Schrödinger equation $\frac{\hat{\vec{\mathbf{p}}}^2}{2m}\left| \Psi (t)\right\rangle + V(\hat{\vec{\mathbf{r}}},t)\left| \Psi (t) \right\rangle=i \hbar {d\over dt} \left| \Psi (t) \right\rangle$