urgn (&
p g g letting reverse proxies

API
D8 Services
Dependency

Injection
Container

~
drupal 8)

A purgng.domains service is
considered as well, but could also
stay in the plugins.

Purgng \ Purger \ Purger
PurgerBase (abstract)
Purgerinterface
ServiceProviderBase
ServiceProviderinterface
ServiceModifierinterface

The purger object is always available
to all of Drupal via the DIC service
purgeng.purger. Because dependency
services and lazy loading are done for
us this is a brilliant mechanism for this.

+ __construct (<service deps>)
+ purge (\Purgeng\Purgeable\Purgeable)
+ purgeMultiple (Array of Purgeable's)

DummyLogPurger

PageCachePurger

Cdn\Purger \ AkamaiPurger

Varnish \ Purger \ VarnishPurger

[The PageCachePurger will be the default]
eference implementation and simply onl!

support TagPurgeable's and
PathPurgeable's, mapping everything
back to the cache API.

VarnishPurger will use the local terminal
interface and not use HTTP.

AcquiaPurge \ Purger \ AcquiaPurger

% purgng.purger

E purgng.queue

event_subscriber

Whenever D8 removes one or more cache tags
these will result in page cache entries getting
cleared. The event subscriber will catch these,
create Purgeable objects for them and add

them to the queue.

Rules Actions

[

Purge cache tag from reverse proxy]

[

Purge path from reverse proxy]

[Purge path with wildcard from reverse proxy]

[

Purge full domain from reverse proxy]

Drush Integration

png-purge: purge a path,

png-process:

png-forget: wipe the queue

png-list:

png-domains:

png-diagnostics: do self-tests

process the queue

list all queued items

list all domains

tag...

Purgng \ Purgeable \ Purgeable
PurgeableBase (abstract)
Purgeableinterface

Purgeable'’s are simple lightweight objects
that are fed to the purger. Purgeable's
describe what needs to be wiped (paths,
tags) and need to be supported per-purger.

prot. string $subject
prot. string $state NULL / TRUE / FALSE

+ __construct (string $subject)
+ __toString()

+ toWatchdog()

+ toQueueltemData()

+ static:fromQueueltemData()

PurgeableFactory

AcquiaPurger will fully auto-configure
via $ENV, do parallel HTTP processing
and will add many self-tests.

The factory will take string $subject
as input and try to instantiate all

TagPurgeable

PathPurgeable

WildcardPathPurgeable

FullDomainPurgable

Purgng \ Queue \ PurgeQueue

PurgeQueueBase (abstract)
ServiceProviderBase

PurgeQueuelnterface
DrupalReliableQueueinterface

The purgng.queue service object stores
Purgeable objects for later execution.

+ __construct (<service deps>)
+add (Array $purgeables)
+pop (int$num,)

+ popExec (int $num, $purger)

+ getStatus ()

DatabasePurgeQueue

MemoryPurgeQueue

Somemodule \ RedisPurgeQueue

's in a loop. When exceptions
are thrown it will advance to the next.

